Showing posts with label pre-weld. Show all posts
Showing posts with label pre-weld. Show all posts

Indirect Resistance Heating

weld preheat heater
Indirect resistance heating example:
Weld preheat ceramic mat heater.
With indirect resistance heating, a heating element transfers heat to the material by radiation, convection, or conduction. The element is made of a high- resistance material such as graphite, silicon carbide, or nickel chrome. Heating is usually done in a furnace, with a lining and interior that varies depending on the target material. Typical furnace linings are ceramic, brick, and fiber batting, while furnace interiors can be air, inert gas, or a vacuum.

Indirect resistance heating can also be done with an encased heater, in which the resistive element is encased in an insulator. Called metal sheath heaters this type of heater can be placed directly in liquid to be heated or close to a solid that requires heating. Numerous other types of resistance heating equipment are used throughout industry, including strip heaters, cartridge heaters, and tubular heaters.

Clamp-on pre-weld electric heater
Indirect resistance heating example: 
Clamp-on pre-weld electric heater.
Resistance heaters that rely on convection as the primary heat transfer method are primarily used for temperatures below 1,250 ̊F. Those that employ radiation are used for higher temperatures, sometimes in vacuum furnaces.

Indirect resistance furnaces are made in a variety of materials and configurations. Some are small enough to fit on a counter top, and others are as large as a freight car. This method of heating can be used in a wide range of applications. Resistance heating applications are precisely controlled, easily automated, and have low maintenance. Because resistance heating is used for so many different types of applications, there are a wide variety of fuel-based process heating systems, as well as steam-based systems, that perform the same operations. In many cases, resistance heating is chosen because of its simplicity and efficiency.

Electric hopper heater
Indirect resistance heating example: 
Electric hopper heaters.
Indirect resistance heaters are used for a variety of applications, including heating water, sintering ceramics, heat pressing fabrics, brazing and preheating metal for forging, stress relieving, and sintering. This method is also used to heat liquids, including water, paraffin, acids, and caustic solutions. Applications in the food industry are also common, including keeping oils, fats, and other food products at the proper temperature. Heating is
typically done with immersion heaters, circulation heaters, or band heaters. In the glassmaking industry, indirect resistance provides a means of temperature control. Many hybrid applications also exist, including “boosting” in fuel-fired furnaces to increase production capacity.

Resistance heating applications are precisely controlled, easily automated, and have low maintenance. Because resistance heating is used for so many different types of applications, there are a wide variety of fuel-based process heating systems, as well as steam-based systems, that perform the same operations. In many cases, resistance heating is chosen because of its simplicity and efficiency.

Contact Hotfoil-EHS for any industrial resistance heating project. With decades of application experience, Hotfoil-EHS engineers can help you design a system tailored to your exact needs.