Hotfoil-EHS Power Consoles: Eurotherm Master Controller Set-up for PWHT Procedure


This video explains how to set up the Eurotherm Temperature Controller on a Hotfoil-EHS Power Console in a Primary/Secondary relationship.


Understanding heating rate, soaking temperature, soaking time and cooling rate for PWHT (Post Weld Heat Treatment)


Post-weld heat treatment (PWHT) is a crucial step in the welding process, as it helps to mitigate the adverse effects of welding on the microstructure and mechanical properties of the welded components. The main objectives of PWHT are to reduce residual stresses, improve ductility, reduce the risk of stress corrosion cracking, and temper or soften the heat-affected zone (HAZ). The four key factors that influence the effectiveness of PWHT are heating rate, soaking temperature, soaking time, and cooling rate.


  1. Heating rate: The heating rate refers to the rate at which the temperature of the welded component increases to reach the desired soaking temperature. A controlled and uniform heating rate is essential to avoid the formation of undesirable temperature gradients within the material, which can lead to distortion and cracking. A slow, steady heating rate also ensures that the material undergoes sufficient thermal stress relief, reducing residual stresses and improving the mechanical properties.
  2. Soaking temperature: The soaking temperature is the target temperature at which the material stays during the heat treatment. The selection of an appropriate soaking temperature is vital, as it determines the extent of stress relief, the softening of the HAZ, and the overall improvement of mechanical properties. The soaking temperature is carefully chosen based on the material's composition, prior heat treatment, and the desired outcomes of the PWHT. Too high a temperature may cause grain coarsening and reduce the material's strength, while too low a temperature may not provide adequate stress relief or soften.
  3. Soaking time refers to the duration the material holds at the soaking temperature. The soaking time is critical for allowing sufficient time for the microstructural changes to occur, such as diffusion of hydrogen, precipitation of carbides, or tempering of martensite. Proper soaking time reduces residual stresses and improves ductility and the desired microstructural changes. Insufficient soaking time can lead to incomplete stress relief, while excessive soaking time may result in grain coarsening, which can adversely affect the material's mechanical properties.
  4. Cooling rate: The cooling rate is the rate at which the temperature of the material reduces after the completion of the soaking phase. The cooling rate significantly influences the material's final microstructure and mechanical properties. Controlled and uniform cooling is essential to prevent thermal gradients that could cause distortion or cracking. Different cooling rates may be required depending on the material and the desired outcome. Faster cooling may achieve a harder, more robust microstructure, while slower cooling rates can produce a more ductile, softer material.


In summary, the heating rate, soaking temperature, soaking time, and cooling rate are essential parameters requiring careful controlling during post-weld heat treatment. These factors determine the effectiveness of the heat treatment process in reducing residual stresses, improving ductility, reducing the risk of stress corrosion cracking, and achieving the desired microstructure and mechanical properties in the welded components.

Welding Pre and Post Heat Treatment Power Consoles

Welding Pre and Post Heat Treatment Power Consoles

Power consoles, also known as control consoles or heat treatment controllers, play a critical role in the heat treatment process by controlling and monitoring the temperature and other parameters of the heating equipment. They typically include a temperature controller, over-temperature protection, and a programmable controller to ensure that the heat treatment process meets the specified parameters, such as temperature and time. They also provide data logging and communication capabilities for process monitoring and control.

Heat treatment power consoles provide control over multiple zones. The number of zones a power console can control can vary depending on the design and capabilities of the specific power console. Some heat treatment power consoles may be able to manage one zone, while others may handle multiple zones. It is common to have four temperature zones under control for industrial heat treatment, but power consoles may even control up to 24 zones. These zones are typically used to control different workpiece sections and can be used to create specific temperature profiles for other parts of the process.

Power consoles in heat treatment typically control various heating systems, such as electric resistance, gas-fired, or induction heating. Electric resistance heating systems use electric heating elements, such as resistance wire, to heat the workpiece. Gas-fired heating systems use a combustion process to generate heat in the furnace. Induction heating systems use an electromagnetic field to generate heat within the target. The power console controls the current flow to the induction coils to develop the electromagnetic field and maintain the desired temperature within the target. In some cases, power consoles also contain cooling systems and atmosphere generators to achieve specific temperature profiles and atmospheres during heat treatment.

https://hotfoilehs.com
609.588.0900

What is Post Weld Heat Treatment?

What is Post Weld Heat Treatment

Post weld heat treatment (PWHT) is a process in which a welded component is heated to a specific temperature and then cooled at a controlled rate, with the goal of reducing the residual stresses that are present in the weld and the heat-affected zone (HAZ). PWHT is often used in the manufacturing of pressure vessels, boilers, and other components that are subjected to high stresses and must meet certain strength and toughness requirements.

There are several different methods that can be used for PWHT, including:
  • Electric heating: This method involves using electric resistance heaters to heat the component to the required temperature.
  • Gas heating: This method involves using gas burners or a gas-fired furnace to heat the component.
  • Induction heating: This method involves using an induction coil to generate an alternating current in the component, which creates heat through resistive heating.


There are several types of furnaces used for post weld heat treatment, including:
  • Box Furnaces: These are the most common type of furnace used for post weld heat treatment. They are typically made of steel and are insulated to retain heat. They can be heated by gas, electricity, or oil, and are often used for small to medium-sized parts.
  • Pit Furnaces: These are similar to box furnaces, but are sunken into the ground. They are used for larger parts and are often used for heat treatment of steel plates and structural steel.
  • Continuous Furnaces: These are used for heat treating large quantities of parts. They consist of a conveyor system that moves the parts through the furnace.
  • Car-Bottom Furnaces: These are similar to pit furnaces, but are raised off the ground and have a car-bottom design. They are used for heat treating large, heavy parts, such as castings and forgings.
  • Atmosphere Controlled Furnace: This type of furnace is used to control the atmosphere inside the furnace during heat treatment. This is useful to prevent oxidation of the parts.


Ceramic mat heaters are used for localized post weld heat treatment to provide a controlled and consistent heat source for specific areas of a welded joint. These heaters are typically made from high-temperature ceramic materials that can withstand extreme temperatures and provide a uniform heat distribution.

During post weld heat treatment, ceramic mat heaters are placed on the area of the weld that needs to be treated. The heaters are then turned on and the temperature is gradually increased until it reaches the desired level. The heat is maintained for a specific period of time, depending on the type of material and the desired outcome of the heat treatment.

One of the main advantages of using ceramic mat heaters for post weld heat treatment is that they can be easily positioned and repositioned to provide heat to specific areas of the weld. This allows for more precise and accurate heat treatment, which can result in a stronger and more durable weld.

Another advantage of using ceramic mat heaters is that they are very energy efficient, as they only heat the specific area that needs to be treated, reducing energy consumption and costs.

HEAT UP AND COOL DOWN RATE

The heat-up and cool-down rates during post-weld heat treatment (PWHT) are important because they affect the microstructure of the welded area, and thus its mechanical properties. If the heat-up rate is too fast, the weld may not fully austenize, leading to a lack of uniformity in the microstructure and potentially reducing the strength of the welded joint. Similarly, if the cool-down rate is too fast, the weld may not fully transform to the desired microstructure, again leading to a lack of uniformity and reduced strength. Therefore, a controlled heat-up and cool-down rate is necessary to ensure the proper microstructure and mechanical properties in the welded area.

The specific PWHT method and parameters (temperature, hold time, cooling rate, etc.) will depend on the material being welded and the desired properties of the finished component.

Hotfoil-EHS can assist you in designing and fabricating the best solutions for your heat treatment requirement. Call them at 609-588-0900 or visit https://hotfoilehs.com.


Purchase All Your Pre and Post Welding Heat Treatment Supplies Online from HeatandWeld.com

Pre and Post Welding Heat Treatment Supplies

HeatandWeld.com is an online store that sells components, parts, and systems used in welding heat treatment applications where accurate heating and temperature control is critical for solid welds.  

Welding heat-treating specialties used in preheat and post heat are available in stock and online. Products such as ceramic mat heaters, thermocouple attachment units (TAUs), Brinell testers, thermocouple wire, insulation, camlocks, and recorder supplies are available for purchase through this website. HeatandWeld has a large inventory, quick delivery, and affordable prices.

Procure all of your pre and post-welding heat treatment supplies from HeatandWeld.com